7 research outputs found

    Fingerprinting Software Defined Networks and Controllers

    Get PDF
    SDN transforms a network from a calcified collection of hardware into a logically centralized and programmable method of interconnectivity. Changing the networking paradigm shifts a networks security posture. Changes visible to a host connected to the network include small latency differences between a traditional network environment and an SDN environment. This thesis aims to reliably distinguish SDN environments from traditional environments by observing latency behavior. Additionally, this thesis determines whether latency information contributes to the unique fingerprint of SDN controllers. Identifying the controller software gives an adversary information contributing to a network attack. An SDN and traditional network environment consisting of two hosts, one switch, and one controller are created. Within both environments, packet RTT values are compared between SDN and traditional environments to determine if both sets differ. Latency analysis is used to observe features of an SDN controller. Collected features contribute to a table of information used to uniquely fingerprint an SDN controller. Results show that packet RTTs within a traditional network environment significantly (p-value less than 1:0 10(-15)) differ from SDN environments. The predicted controller inactivity timeout within the simulated environment differs from the true timeout by a mean value of 0.44956 seconds. The emulated environment shows that the observed inactivity timeout depends on the network switch implementation of the controllers set value, leading to incorrect observed timeouts. Within the SDN environment, the host is not able to directly communicate with the SDN controller, leading to an inability to collect the number of features needed to uniquely identify the SDN controller

    How Many Varieties of Capitalism? Comparing the Comparative Institutional Analyses of Capitalist Diversity

    Full text link

    Prior vaccination with rVSV-ZEBOV does not interfere with but improves efficacy of postexposure antibody treatment

    No full text
    During an ongoing Ebola virus outbreak, infection before onset of protective immunity from vaccination is a possible scenario. Here the authors show in non-human primates that vaccination shortly before treatment with a monoclonal antibody does not negatively affect effectiveness of the antibody therapy

    Reversion of Ebolavirus Disease from a Single Intramuscular Injection of a Pan-Ebolavirus Immunotherapeutic

    No full text
    Intravenous (IV) administration of antiviral monoclonal antibodies (mAbs) can be challenging, particularly during an ongoing epidemic, due to the considerable resources required for performing infusions. An ebolavirus therapeutic administered via intramuscular (IM) injection would reduce the burdens associated with IV infusion and allow rapid treatment of exposed individuals during an outbreak. Here, we demonstrate how MBP134, a cocktail of two pan-ebolavirus mAbs, reverses the course of Sudan ebolavirus disease (Gulu variant) with a single IV or IM dose in non-human primates (NHPs) as late as five days post-exposure. We also investigate the utility of adding half-life extension mutations to the MBP134 mAbs, ultimately creating a half-life extended cocktail designated MBP431. When delivered as a post-exposure prophylactic or therapeutic, a single IM dose of MBP431 offered complete or significant protection in NHPs challenged with Zaire ebolavirus. In conjunction with previous studies, these results support the use of MBP431 as a rapidly deployable IM medical countermeasure against every known species of ebolavirus

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore